Deep Feature Learning for Acoustics-Based Terrain Classification
نویسندگان
چکیده
In order for robots to efficiently navigate in real-world environments, they need to be able to classify and characterize terrain for safe navigation. The majority of techniques for terrain classification is predominantly based on using visual features. However, as vision-based approaches are severely affected by appearance variations and occlusions, relying solely on them incapacitates the ability to function robustly in all conditions. In this paper, we propose an approach that uses sound from vehicle-terrain interactions for terrain classification. We present a new convolutional neural network architecture that learns deep features from spectrograms of extensive audio signals, gathered from interactions with various indoor and outdoor terrains. Using exhaustive experiments, we demonstrate that our network significantly outperforms classification approaches using traditional audio features by achieving state of the art performance. Additional experiments reveal the robustness of the network in situations corrupted with varying amounts of white Gaussian noise and that fine-tuning with noise-augmented samples significantly boosts the classification rate. Furthermore, we demonstrate that our network performs exceptionally well even with samples recorded with a low-quality mobile phone microphone that adds substantial amount of environmental noise.
منابع مشابه
A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملDeep-Learning-Based Classification for DTM Extraction from ALS Point Cloud
Airborne laser scanning (ALS) point cloud data are suitable for digital terrain model (DTM) extraction given its high accuracy in elevation. Existing filtering algorithms that eliminate non-ground points mostly depend on terrain feature assumptions or representations; these assumptions result in errors when the scene is complex. This paper proposes a new method for ground point extraction based...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملSpeech Emotion Recognition Based on Deep Belief Networks and Wavelet Packet Cepstral Coefficients
A wavelet packet based adaptive filter-bank construction combined with Deep Belief Network(DBN) feature learning method is proposed for speech signal processing in this paper. On this basis, a set of acoustic features are extracted for speech emotion recognition, namely Coiflet Wavelet Packet Cepstral Coefficients (CWPCC). CWPCC extends the conventional MelFrequency Cepstral Coefficients (MFCC)...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015